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N Abstract

The empirical testing of a program often calls for generating a set of random
numbers and then immediately sorting them. In this paper we consider the problem
of accomplishing that process In a single step: generating a sorted list of random
numbers (specifically, reals chosen uniformly from [0,1]). The method we describe
. generates the randoms in linear time, is perfectly random (if it can call a perfectly
; random generator for a single uniform), and can be described in just three lines of
Algol or Pascal code. If the numbers are not required to be generated all at once
:, (but are rather to be used one-at-a-time), then the method can be implemented as a
subroutine to produce the "%:xt"’r/wmber and requires only constant storage.
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1. Introduction

The first step of many computer algorithms Is to sort the Input data. When
testing these programs to determine runtimes empirically, one usually generates N
random numbers and then sorts them. The efficiency of sorting algorithms Is
well-known (see Knuth [1873]), however, so it is often not necessary to test the
sorting procedure empirically in a particular program. In this application (as well as
many others), it is desirable to generate a sorted list of random numbers as quickly
as possible. In this paper we will study the problem of generating a sorted list of N
reals drawn uniformly from [0,1].

The most obvious method for generating a sorted list of randoms Is to first
generate N randoms (see Knuth [1969, Chapter 3]) and then sort them. This
method requires time proportional to NigN In the worst case, but this can be
reduced to linear expected time if a "bucket" sort Is used (see Knuth [1973,
Section 5.2.1]). This linear expected time algorithm is rather complicated to code,
and requires extra space proportional to N. A knowledge of elementary probabllity

theory, however, allows one to use more sophisticated approaches.

In this paper we will investigate a new method for generating sorted lists of
randoms that has significant advantages over all previous approaches. We will
begin by discussing previous work in Section 2. In Section 3 we will study some
important probabillistic lemmas, and then show In Section 4 how these can be used
to make efficient programs. A discussion of this approach Is offered in Section 5.

2. Previous Work

Before presenting our new algorithms for generating sorted lists of random
numbers, we will mention, for purposes of completeness and of comparison, the best
previously known method for generating sorted lists of random numbers. Although
the method seems to be well-known among statisticlans, the present authors are
unable to find a description of its computational aspects In the statistical literature.
The algorithm Is based on the following lemma.
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Lemma 1:
It Xqo X3y « « ., Xpeq are independent random variables with exponential
distribution of any fixed mean, then the values

vl Zx]1/[ 2 x]
1515) 15Kne1

for j= 1, ..., n are distributed as the order statistics of a random sample of
size n from U[0,1].

Proof:
We omit the proof of this lemma as it is well-known (see, for example, Johnson
and Kotz [1970, Chapter 18]) and Is not essential to the main thrust of this
paper. O

An algorithm derived from Lemma 1 is described by the following pseudo-Pasca!
code. It assumes that RAND is a function that on each call returns an Independent
random number from the uniform distribution on [0,1]; a random exponential is then
achieved by negating the natural logarithm of RAND. The effect of the algorithm Is
to fill elements 1..N of the array X with sorted random numbers independently drawn
from U[O,1].

Sum ¢ O3
for 1 « 1 to N do

X[1] & Sum & Sum = In(RAND);
Sum ¢ Sum = In(RAND);

for 1 «1 to N do
X[1) & X[1)/Sums

Program 1. Filling an array with sorted randoms.

It is obvious that this method is a very efficient way of generating sorted lists of
numbers chosen uniformly on [0,1]. Its one computational disadvantage, however, is
that it is inherently a two-pass aigorithm--the first to place the Mbirs into the
array and the second to normalize them. We will now turn our attention to a' new,

single-pass aigorithm.
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3. Probabllistic Arguments

The correctness of the algorithms to be presented in Section 4 rests on the
following two lemmas. Lemma 2 will allow us to generate, in constant time, the
largest of n independent uniformly distributed random numbers. Lemma 3 shows that
once we have generated the k largest of n Independent uniform rapdomo. the
problem of generatlnﬁ the ke13t largest reduces to the problem of generating the
largest of n-k independent uniform randoms.

Lemma 2:

The probability distribution of the maximum of n independent random numbers
from the distribution U[0,1] Is the same as that of the nt! root of a single
number from U[O0,1]. ‘

Proof:

Note that the both distributions mentioned range over the interval [0,1]. Let

q € [0,1]. It suffices to show that numbers from either distribution have equal
probabllity of being in [0,q].

If X Is drawn from U[0,1], then P(X1/"¢q) = P(X<q") = q". On the other hand,
the largest of a set of n numbers in [0,1] will lie in [0,q] Iff all n lie in [0,q].
Since the probability of a singla number drawn from U[0,1] will lie in [0,q] Is q,
it follows that the probabllity of n numbers drawn independently from U[0,1] all
being less than q is also q". O

Lemma 3:

Let n and k be positive integers, n < k. Let Y11+ + « s Yk be elements of [0,1]
such that yy 2 yp2 .. .2 yy. Then, for n random numbers X4, . . ., X, chosen
independently from U[0,1] the distribution, conditional on the largest k being
Y1+« « +» Yo Of the k+13% largest is the same as the distribution of the largest
of n-k numbers uniformly selected from [0,y ).
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Proot 1
We note first that the probabllity of the k+18t largest of the X; being equal to
Yk Is zero, as Is the probability of the largest of n-k independent draws from
U[O,yy] being equal to yk- [t remains to consider the case where the k+18t
largest of the X, lies in [0,y,).

Consider the event space of all sets of n independent draws from U[0,1]. The
subspace containing all events wherein the largest k numbers drawn are
Y11 ..., Yk Mmay be partitioned into a number of equivalence classes.2 Each
such equivalence class may be obtained by assigning the y; to k of the X,
picking all events from the full space which satisfy these assignments, and
throwing away all events in which any of the n-k "unspecified" X; happen to be
larger than or equal to y,. Thus, the distribution of the smallest n-k entries,
within each equivalence class, Is precisely the distribution of n-k independent
draws from U[O,y,). Since there are finitely many equivalence classes, it
follows that the distribution of the n-k smallest entries, within the union of all
equivalence classes (/.e., contingent only on the k largest draws being
Y1+ + - « » Y and on the k+13t being less than y, ) is identical to the distribution
of n-k Independent draws from U[O,yy). This completes consideration of the
case In which the k+13% largest of the X Is In [0,y ), so we are done. [

4. Programs

In this section we will see how the basic probabilistic facts discussed in the last
section can be used to make programs for generating sorted lists of randoms. In all
these programs we will assume that we have a subroutine RAND that returns a
random number drawn uniformly from [0,1]. Al the programs that we will describe
produce correct output In the sense that if RAND satisfies the probabllistic definition
of U[0,1], then the output of our program will satisty the probabliistic definitions of a

‘Shco this paper is intended primarily for non-statisticians, we have attempted to minimize statistical notation in
the presentation of this lemma, at the expense of conciseness. A more general form of this well-known result is
more formally presented as Theorem 2.7 of David [1870).

27his number (the number of event classes) may range from 1 to n/(n-k)!, depending on the number and pattern
of equalities among the Y&
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sorted list of N such randoms.

Lemma 2 of Section 3 allows us to generate the maximum of N uniforms in [0,1]
by evaluating RanD1/ ". which we will call CurMax (for reasons soon to become
obvious). After we have done that, Lemma 3 allows us to solve the remainder of the
problem by generating N-1 randoms uniform on [0,CurMax]. We can accomplish this
by taking as the maximum the value of CurMax-RAND'/(N-1) and so forth. This
Process can be described precisely by the following program in pseudo-Pascal,
which places the random numbers into the array X in decreasing order.

CurMax ¢ 1,0
for I & N downto 1 do
X[1] « CurMax & CurMax * RAND1/I;

Program 2. Straightforward implementation.
In the above program the variable CurMax represents the current maximum of the
range in which | randoms are to be generated. (A program essentlally equivalent to
Program 2 was described by Friedman [1971] for use in random event generation In

a physics context. He did not, however, observe the generality of his method.)

In Program 2 we exponentiate to a fractional power. Since most programming
languages do not directly support such a statement, this step is usually implemented
as :

X[1] & CurMax ¢« CurMax * exp(In(RAND)/1),

The multiplication in that statement might be a source of numerical error, so It can
be replaced by an addition as in the following program to fill X with sorted randoms.

LnCurMax « 0,03
for 1 & N downto 1 do
begin
LnCurMex « LnCurMax + In(RAND)/1:
X[1] & exp(LnCurMax)
ends

Program 3. Muitiplication replaced by addition.
Note that with perfect arithmetic this procedure will produce exactly the same
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output as Program 2 (assuming the use of the same procedure RAND); this program,
however, is numerically more robust than Its predecessor.

In many applications the variables are not all needed at one time, but rather can
be used "on the fly". If this is indeed the case, then using the N array words of X is
very wasteful of storage. We would prefer to have an algorithm that can generate
the "next" value. We will now describe such an algorithm as two Pascal
subroutines. Procedure InitSorted Is passed an integer N and Initializes the global
variables | (an Integer) and LnCurMax (a real); NextSorted Is a parameteriess
function that returns the next value in decreasing order (unless N values have
already been returned).

procedure InitSorted(N: integer):
begin
1 &N
LnCurMax ¢ 0,0
ends

function NextSorted: reals
begin
if 1 <= 0 then Abort;
LnCurMax ¢ LnCurMax + In(RAND)/1:
I e«l-1
NextSorted ¢ exp(LnCurMax)
ends

Program 4. On-line generation of sorted randoms.
Making N successive calls on NextSorted after executing InitSorted(N) will produce
exactly the same output as executing either Program 2 or Program 3 (although not
In the array X). If an N+13% call Is made on NextSorted then abnormai termination
will be effected by calling procedure Abort. As this algorithm Is stated It returns the
values in decreasing order; If increasing order Iis preferred then this can be
accomplished by subtracting the resuit from one.

i it ine N " i s £ - ot e e it e L i
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Programs 3 and 4 of the previous section have been Implemented as Pascal
programs; these programs are described by Bentley and Saxe [1979]. Both
Implementations required approximately 250 microseconds to generate a single
random number when executed on a Digital Equipment Corporation PDP-10 KL
pmc:essor.1 To compare these programs to more stralghtforward methods of solving
this problem we wrote a program that generates an array of N random uniforms and
then uses Quicksort to sort the array. The Implementation of Program 3 was
somewhat slower thar the sorting methods for values up to N = 250; after that point
Program 3 is faster. A significant advantage of our programs over the nalve
methods, however, Is that while the sorting algorithm was described by some 80
lines of Pascal code, our method requires only a dozen lines. To ensure that the
randomness properties of our algorithms were not adversely affected by roundoff
errors or by using a linear-congruential psuedo-random number generator, we ran a
number of statistical tests to determine the randomness of the resulting
numbers--all tests were passed with flying colors.

Throughout this paper our programs have taken logarithms of real numbers
uniformly distributed on [0,1]. Notice that this leads to an undefined result if the
value of the random number Is zero. Although this does not affect the theory
underlying the paper (since we only took such logarithms to "simulate" fractional
exponentiation or generate exponentially distributed randoms), this will affect
programs Iimplementing these methods. Such programs should take logarithms of
randoms uniform on (0,1]. Since most RAND subroutines return values uniform on
[O,1), this can be accomplished by using 1-RAND as the desired random number.

Although It Is clear that the method of Program 3 Is suparior to a

11’ho Pascal compiler used in these tests does not produce very efficient code; the authors suspect that the
speed of the programs could be substantially increased by careful hand-coding. This is unnecessary k: mest
applications, however, since the use of this method is usually enough to remove the process of generating sorted
randoms from the time bottieneck of the program.

PR | LT
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generate-and-sort solution in aimost all applications, it is more difficuit to compare
Program 3 with Program 1. Program 1 is faster than Program 3 (Program 1 uses an

addition, a logarithm, a multiplication, and three array accesses for each random;

Program 3 uses an additional exponentiation, but only one array access), but
Program 3 is shorter to code. The primary advantage of the method of Section 4.
over Program 1 is that this method can be implemented on-line; the method of

Program 1 has no on-line version corresponding to Program 4.

Although we have described our method for generating sorted lists of uniform

random numbers, the same method can be extended to generate sorted numbers

from other distributions. To generate numbers from distribution F for which the
inverse F~1 is known, it is only necessary to apply the monotone function F1 to {
each of the outputs of Programs 3 or 4, and the resulting sorted list will satisfy all

the desired properties.
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ALGORITHM. Generating Sorted Lists of Randoms

DESCRIPTION

This Pascal program implements two algorithms described by Bentiley and Saxe
[1979] for generating sorted lists of random numbers. The theory underlying these
algorithms can be found in that paper.

REFERENCE
Bentley, J. L. and J. B. Saxe [1979]). "Generating sorted lists of random

numbers," attached.

ALGORITHM
(% ROUTINES FOR GENERATION OF SORTED RANDOM NUMBERS ¥)

(* The algorithms used in this program are taken from "Generating
sorted lists of random numbers", hereinafter referred to as
"Bentley and Saxe." The reader should refer to that article for
a discussion and justification of the algorithms. The procedure
GenSor ted implements Program 3 of Bentley and Saxe for filling
an array uwith sorted random numbers uniformly draun from the
interval [(8,1). The procedure InitSorted and the function
NextSor ted together Iimplement Program & of Bentley and Saxe for
generating sorted random numbers on-line. The main program is a

test driver which exercises these routines. )
const
MaxRands = 100; (v« Maximum number of random numbers
generated by Gensorted i)
TestSize = 25; (% Number of sorted randoms to generate--

used by test driver. (Note: TestSize
must be <= MaxRands) w%)

type
RandArray = array [1..MaxRands] of real;
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var

(x Variables for on-line generation of sorted randoms. These
variable names are the same as those used in Program 4 of
Bentley and Saxe, except that they have been preceded by
"OLG" (for On-Line Generation) to lessen the probability of
name conflicts with other global variables w#hich may occur
in programs using the on-line generation routines.

OLGl: integer; (* The next random number generated by

NextSorted will be the OLGI-th
smal lest. %)

OLGLNCurMax: real; (» The natural logarithm of the previous
number generated by NextSorted. Before
the first call of a sequence, LnCurMax
is set to B, i.e., INn(l). #)

(v Variables used by driver )
J: integer;
Y: RandArray;

(v Storage used by under|lying random number generator wx)
RandHold: integer;

(% Procedures for generation of uniform random numbers

(%

The built-in function, Random, takes a single integer argument
and returns a pseudo-random real number in the range (8,1). The
argument (here named RandHold) is a VAR parameter used to hold
the current random seed, and is altered by each call to Random.

(v Note: The function Random is not a Standard Pascal built-in

function. At your site the random number function may go
by a different name, or it may even be necessary for you
to urite your oun. (See CALGO Algorithms 266 and 294 or
Section 3.2 of Knuth’s The Art of Computer Programming,
Volume 2: Semi-Numerical Algorithms, Addison-Wesley,
1969.) Also, the method of initializing the random
number generator may vary from site to site. In short,
the programmer should be prepared to rewrite the routines
Rand and InitRand to conform to the local runtime
environment.

procedure InitRand;

begin :
RandHold := @
end;

function Rand: real;

begin
Rand := 1-Random(RandHo!d) (% return a number in (8,1). #)
ends

u11-

%)

)

%)

%)
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Routine to place N random numbers uniformly draun from (0,1)
into X{1..N] in ascending order.

The algorithm used here is that of Program 3 of Bentley and
Saxe.

procedure GenSorted(var X: RandArray: N: integer);

(%
(%

(%

(=

var
l1: integer;
LnCurMax: reals
begin
LnCurMax s« 8.0;
for | t= N dounto 1 do
begin
LnCurMax := LnCurMax + In(Rand)/I;
X(1] := exp(LnCurMax)
end
end;

Routines to generate sorted randoms on-|ine

To generate N random numbers from [B,1], sorted in descending
order: First call InitSorted(N). The next N evaluations of
NextSorted will raturn the random numbers, in descending order.
If InitSort is called again before N calls have been made to
NextSor ted, the current sequence of randoms will be lost and a
new sequence Will begin with the next call to NextSor ted.

Note: If an ascending sequence of random numbers is desired, the
final assignment statement of Nextsorted should be altered to
read "NextSorted := 1 - exp(OLGLnCurMax)".

The algorithms used here are from Program 4 of Bentley and Saxe.
The global variable names, | and LnCurMax, occurring in that
program have here been preceded by "OLG" to guard against their
accidental use by other pieces of code.

procedure InitSorted(N: integer);

begin

OLGI := N;
OLGLnCurMax := 0.8
ends

function NextSorted: reals

begin
if OLGI <= 8 then
begin
uritein(tty, 'Too many calls on NextSorted, Aborted’')s
halt
end;
OLGLnCurMax := OLGLnCurMax + In(Rand)/0LGI;
OLGI := OLGI-1;
NextSor ted := exp (OLGLnCurMax)
ends

-12-

%)

%)

*)

®)

%)

%)
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5 (% Driver to test both single-shot and on-|ine generation of sorted
randoms %)

begin (% main program %)
Ini tRand;

3 SRR SN L W

S OISR T

(* Test single-shot generation of sorted randoms by filling
Y(1..TestSizel with ascending sorted random numbers and dumping
results to output file. ®)

GenSor ted(Y, TestSize);

writein("ODump of array Y after execution of GenSorted’);

for J := 1 to TestSize do

writein(J, Y[J1:18:5);

(% Test on-line generation of sorted randoms by generating TestSize
random numbers in descending order and writing them to output. =)
uritelns
writeln(’Commencing test of on-line generation’);
InitSorted(TestSize);
for J := 1 to TestSize do
writein(J, NextSorted:18:5)
end.
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